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A stochastic mixing model based on the law of large numbers is presented that describes the decay of the
variance of a conserved scalar in decaying turbulence as a power law,sc

2~ t−a. A general Lagrangian mixing
process is modeled by a stochastic difference equation where the mixing frequency and the ambient concen-
tration are random processes. The mixing parameterl is introduced as a coefficient in the mixing frequency in
order to account for initial length-scale ratio of the velocity and scalar field and other physical dependencies.
We derive a nonlinear integral equation for the probability density functionspdfd of a conserved scalar that
describes the relaxation of an arbitrary initial distribution to ad-function. Numerical studies of this equation
are conducted, and it is shown thatl has a distinct influence on the decay rate of the scalar. Results obtained
from the model for the evolution of the pdf are in a good agreement with direct numerical simulationsDNSd
data.
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I. INTRODUCTION

The mixing of a conserved scalarc=cst ,xd, advected by a
turbulent flow, is a problem of both fundamental and practi-
cal interestf1,2g. One of the basic characteristics of the mix-
ing process is the rate at which the scalar variancesc

2std
=ksc−md2l decays with time. Herem is the mean value, and
the angular bracketsk·l denote an averaging procedure. One
of the simplest and widely used mixing models is the inter-
action by exchange with the meansIEMd modelf3,4g. In this
model, the scalar relaxes toward its meanm according to the
simple equation

dc

dt
= −

1

t
sc − md. s1d

Other mixing models are based on mapping closuref5g, the
coalescence-dispersion modelf6g, the Langevin modelf7g,
the Fokker-Planck modelsf8g, the stochastic mixing fre-
quency modelf9g, integral modelsf10g, and the Euclidean
minimum spanning tree modelsEMSTd f11g. Reviews of
these can be found inf1,2g.

There are two different laws governing the decay rate of a
passive scalar:sad the exponential lawf12g

sc
2std ~ exph− t/tj, s2d

with the characteristic timet which is appropriate for sta-
tionary turbulence andsbd the power lawf13,14g

sc
2std ~ t−a, s3d

without any characteristic time scale that is typical for de-
caying turbulence.

Most theoretical models introduce a characteristic time
scale and assume implicitly or explicitly the exponential de-
cay rate. The main purpose of this paper is to study the
mixing process following the power laws3d. Experiment re-
sults show that the decay of the variance strongly depends on
the initial ratio of the velocity and scalar length scales and
that there is no universal decay exponentf15g. It is well
known that the decay exponenta depends on the low wave-

number part of the scalar and velocity spectrum,Ecsk,td and
Esk,td f13g. One can expand both spectra into a Taylor se-
ries: Ecsk,td=2pk2fC0+C2k

2+Osk4dg and Esk,td=2pk2fB0

+B2k
2+Osk4dg f14g. For high Reynolds and Peclet numbers,

the scalar variance can be considered as a function ofC0,B0
and t alone and dimensional arguments lead to

sc
2std ~ C0B0

−3/5t−6/5 s4d

with a=1.2. ForC0,B0 equal to zero, the scaling argument
results in different approximate decay laws witha equals to
6/7,10/7, or 2f13g.

Here we present a simple stochastic mixing model based
on the law of large numberssLLN d f16g. The reason why the
LLN is involved in our formulation of the mixing problem is
that the random conserved scalarc=c(t ,xstd) appears to be-
have as a sample mean. It converges to the mean valuem,
while the variancesc

2std decays approximately ast−1. Since
the variance of the scalar decays faster than a sample mean
stypically a is greater than unityd, we will introduce some
nonlinear modifications into the corresponding probability
density functionsPDFd equationfsee Eq.s35dg. The main
idea is to develop a robust model that is independent from
restrictive assumptions regarding stochastic properties of the
mixing process. Here we exploit the similarity of the behav-
ior of a scalarc to that of the sample mean

cn =
1

n
o
k=1

n

zk, s5d

wherez1,… ,zn is a sequence of mutually independent ran-
dom variables, each having a meanm and standard deviation
sj

2. The LLN tells us that the random sumcn tends to the
mean valuem with probability one, while the variancescn

2

=kscn−md2l decays assj
2/n. Then, the probability density

function of cn tends to ad-function,dsc−md, asn→` inde-
pendent of the initial shape of the PDFps0,cd. In the present
paper, where we consider decaying isotropic turbulence with
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the constant scalar meanm, the discrete incrementn can be
understood as the time variable.

The main result of this paper is the derivation of the time-
discrete nonlinear integral equation for the PDFpst ,cd

pst + 1,cd =E
0

1E
−1

1+t
l

−1 t + 1

1 + t − ls1 + «d

3pSt,
st + 1dsc − md − ls1 + «dsz− md

1 + t − ls1 + «d D
3pst,zdcst,«dd«dz s6d

for t=1,2,3,… . Herecst ,«d is the PDF for the mixing fre-
quency andl is the mixing parameterssee belowd. The main
property of this equation is that it describes the relaxation of
pst ,cd to a d-function

pst,cd → dsc − md as t → `. s7d

The decay of the variance,sc
2std=kscstd−md2l, is of the form

t−a for larget. The casea=1 corresponds to the law of large
numbers.

The remainder of this paper is organized as follows. In
Sec. II we derive the integral equation from a stochastic dif-
ference equation describing the evolution of the PDF of a
passive scalar in time. In Sec. III we solve the nonlinear
integral equation numerically and analyze the influence of
the different parameters on the decay rate. The evolution of
the PDF is compared to data obtained from a direct numeri-
cal simulationsDNSd.

II. STOCHASTIC MIXING MODEL

The evolution of a passive scalarc=cst ,xd is governed by
the stochastic PDE

]c

]t
+ vst,xd · = c = D¹2c, s8d

wherevst ,xd is the random velocity field andD is the mo-
lecular diffusivity. The classical problem is to derive a closed
equation for the Euler one-point PDFp=psc; t ,xd=kd(c
−cst ,xd)l. A detailed discussion of this, still unsolved, prob-
lem can be found inf2g. In the present paper we consider the
mixing problem in the Lagrangian framework by introducing
a passive scalarcstd=c(t ,xstd) of a particle volume moving
with the velocityv(t ,xstd) ssee Fig. 1d.

A. Stochastic difference equation

The equation for the scalarcstd=c(t ,xstd) of the particle
moving with the random velocityv(t ,xstd) can be approxi-
mated by the stochastic equation

dc

dt
= − gstd„c − c̃std…, s9d

where the mixing frequencygstd and the ambient concentra-
tion c̃std are random processes. For the constant values ofg
and c̃, we obtain the IEM models1d with the exponential
decay

cstd − c̃

cs0d − c̃
= exph− gtj. s10d

The key feature of the present model is thatc̃std is a
random process and functional ofcstd itself. The crucial as-
sumption that relates Eq.s9d to the law of large numbers is
that the mean valuekgstdl behaves ast−1 for larget. One can
show that for a statistically homogeneous Gaussian scalar
field c=cst ,xd, the mean valuekgstdl is proportional to the
ratio x /sc

2, where x is the mean-scalar dissipation rate,x
=2Dks¹cd2l ssee p. 551 in Ref.f2gd. It follows from the
classical equation for the variance decayf2g

dsc
2

dt
= − x, s11d

that if the scalar variancesc
2std~ t−a, then the mean scalar

dissipationx decays ast−s1+ad and, therefore,

kgstdl ~ t−1. s12d

Of course, these results are specific to a homogeneous
Gaussian field, and it would be very difficult to validate them
in a general case. Therefore, the above formula should be
considered as the main assumption of the paper.

The appearance of the power-law decay in the determin-
istic case can be understood if we assume that the mixing
frequencyg is lst0+ td−1. Then

dc

dt
= −

l

t0 + t
sc − c̃d. s13d

The solution to this simplified equation takes the form of the
power-law decay

cstd − c̃

cs0d − c̃
= S t0

t0 + t
Dl

. s14d

Since our aim here is to relate the mixing problem to the law
of large numbers for the sample means5d, it is more conve-
nient to rewrite Eq.s9d as a stochastic difference equation for
the concentrationcn

cn+1 − cn = − gnscn − c̃nd, 0 ø cn ø 1, n = 1,2,3,…,

s15d

wheregn and c̃n are the mixing frequency and the random
ambient concentration at the timen. We assume that they are

FIG. 1. Mixing problem along Lagrangian path way.
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sequences of mutually independent random variables with
the densities

vsn,gd =
d

dg
Phgn , gj, fsn,c̃d =

d

dc̃
Phc̃n , c̃j s16d

and the first moments

kgnl =E
0

1

gvsn,gddg =
l

1 + n
, kc̃nl =E

0

1

c̃fsn,c̃ddc̃= m.

s17d

In what follows we assume that the mean concentrationm is
constant. The mean mixing frequencykgnl has been chosen
in such a way that it is equal tol /2 at timen=1. The pa-
rameterl can be regarded as a measure of the mixing fre-
quency. Since 0øcnø1,gn obeys the inequality 0øgnø1.
By introducing the deviations from the meanm for the con-
centration of the particle and its surrounding, respectively,

un = cn − m, jn = c̃n − m, s18d

we can rewrite Eq.s15d as

un+1 = un − gnsun − jnd, − m ø un ø 1 − m, n = 1,2,3,…,

s19d

wherejn is a sequence of zero mean, independent random
variables with the densityfsn,jd and −møjø1−m.

B. Law of large numbers and forward Kolmogorov equation

To illustrate the connection between the mixing problem
and the law of large numbers, consider the case when the
sequencejn is statistically stationary; that is,fsjd is inde-
pendent ofn and the mixing frequencygn is a deterministic
sequence of the form

gn =
1

1 + n
s20d

with l=1. Let us write Eq.s19d in a slightly different form

un+1 = un −
1

1 + n
sun − jn+1d. s21d

If we assumeu1=j1, it follows from Eq. s21d that u2=sj1

+j2d /2 ,u3=sj1+j2+j3d /3, and so on. Therefore, the solu-
tion of Eq. s21d can be written as a sample mean

un =
1

n
o
k=1

n

jk, s22d

which tends to the zero mean asn→` while the variance
kun

2l~n−1 f17g.
The advantage of having Eq.s19d is that we can easily

derive an equation for the probability density function

psn,ud =
d

du
Phun , uj, n = 1,2,3,… . s23d

It follows from Eqs.s19d and s20d that un is a discrete Mar-
kov process and the PDF for this process satisfies the for-
ward Kolmogorov equationf16g

psn + 1,ud =
n + 1

n
E

−m

1−m

pSn,
sn + 1du − j

n
Dwsjddj,

n = 1,2,3… . s24d

Here we used the inverse equation

un =
sn + 1dun+1 − jn

n
. s25d

The main properties of the solution of the Kolmogorov equa-
tion s24d with the arbitrary initial conditionps1,ud are

psn,ud → dsud asn → ` s26d

and

E
−m

1−m

u2psn,uddu→ n−1 asn → `. s27d

C. General case: Random mixing frequency and nonlinear
PDF equation

To account for the entire spectrum of time scales, we now
assume that the mixing frequencygn is a stochastic variable.
It is convenient to write

gn =
l

1 + n
s1 + «nd, s28d

where«n is the sequence of zero mean, independent random
variables. Since 0øgnø1, it follows from Eq.s28d that

− 1 ø «n ø
1 + n

l
− 1. s29d

The decay of the variance of the mixing frequencysg
2snd can

be determined as

sg
2snd = ksgn − kgnld2l =

l2k«n
2l

s1 + nd2 . s30d

When both «n and jn are random variables, we have to
specify the joint probability density for« andj. If we denote
it by Csn,« ,jd, then the forward Kolmogorov equation for
psn,ud takes the form

psn + 1,ud =E
−m

1−m E
−1

1+n
l

−1 n + 1

1 + n − ls1 + «d

3pSn,
sn + 1du − ls1 + «dj

1 + n − ls1 + «d D
3Csn,«,jdd«dj. s31d

This equation follows from the stochastic difference equation
for the Markov jump process:

un+1 = un −
l

1 + n
s1 + «ndsun − jnd − m ø un ø 1 − m

s32d

and its inverse
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un =
sn + 1dun+1 − ls1 + «djn

1 + n − ls1 + «d
. s33d

Sincegn is determined by the random scalar dissipation rate,
it is natural to assume thatgn andjn are independent. More-
over, the PDF forjn must be related topsn,ud. The simplest
choice would be to assumepsn,jd, which gives

Csn,«,jd = psn,jdcsn,«d. s34d

In this case the generalized nonlinear integral equation for
psn,ud can be written as

psn + 1,ud =E
−m

1−m E
−1

1+n
l

−1 n + 1

1 + n − ls1 + «d

3pSn,
sn + 1du − ls1 + «dj

1 + n − ls1 + «d D
3psn,jdcsn,«dd«dj s35d

for n=1,2,3,… . It follows from Eq.s30d that the variance of
the mixing frequencysg

2snd decays asn−2 if the variance
s«

2=k«n
2l is constant.

We expect that the variance of a passive scalarsc
2snd

=kscn−md2l=kun
2l behaves asn−a for largen. Taking the ana-

lytical solution of the simplified models13d into account, we
anticipate a strong dependence ofa on the mixing parameter
l. The trivial casel=0 describes the motion of an inert
particle in its surrounding and Eq.s19d has the simple solu-
tion un=u1 for all n. However, ifl is close to its upper limit,
the Lagrangian particle volume experiences strong interac-
tions with its surrounding. Intuitively, it can be expected that
the mixing parameterl has a distinct influence on the decay
of su

2 fsee solutions14d to simplified equationg.

III. NUMERICAL RESULTS

The integral equations35d describes the relaxation of an
arbitrary initial PDF of a conserved scalarc to a
d-distribution for largen. Because of the nonlinearity inp,
this equation needs to be solved numerically. In this section,
we analyze the behavior of the solution of Eq.s35d for dif-
ferent values of the parameterl, initial conditions for
psn,ud, and the density functioncsn,«d for the stochastic
variable «n. In particular, we study the dependence of the
decay exponenta on l andcsn,«d.

Let us first discuss some numerical issues. In order to
advance the densitypsn+1,ud in time, Eq. s35d must be
integrated over thej and« space, which results in the overall
complexityOsNu3Nj3N«d for each time step. Here,Nz de-
notes the number of grid points in thez direction. This
makes the computation rather time-consuming. However, a
computer code can be easily parallelized along theu coordi-
nate. The initial density ofu relaxes to ad-distribution with
steep gradients aroundu=0. An adaptive grid using the equi-
distribution principle is employed inu andj space in order
to resolve the shape of the PDF properly. In the equidistri-
bution principlef18g, an initially given number of grid points
is distributed in such a way that the conditioneui

ui+1wsuddu

=sNu−1d−1e−m
1−mwsuddu is satisfied. The weight functionwsud

is a positive function measuring the variation of the solution.

A. Parameters and initial conditions

From experiments and DNS studies it is known that the
density distribution of a passive scalar can be reasonably
approximated by ab distribution f1,2g. Recall that theb
distribution has nonzero probability in the interval
fumin,umaxg and has the form

bsu;kul,su
2d =

Gsa + bd
GsadGsbd

sumax− umind1−a−bsu − uminda−1

3sumax− udb−1. s36d

It is fully described by two parameters, which are functions
of kul andsu

2

a =
kul − umin

umax− umin
F skul − umindsumax− kuld

su
2 − 1G , s37d

b =
umax− kul
umax− umin

F skul − umindsumax− kuld
su

2 − 1G . s38d

The b distribution adopts a wide range of shapes: for the
maximum variance su

2=skul−umindsumax−kuld, a double

TABLE I. Fixed parameters used for the numerical
simulation.

Parameter Description Value

nEnd number of time steps 100 000

m mean value 0.5

Nu dimension ofu 101

Nj dimension ofj 101

N« dimension of« 101

TABLE II. Combinations of initial distributions used for the
parameter study:bssz

2d sb distribution with prescribed variancesz
2d

dszd sDirac d-function for zd.

Run ps1,ud cs1,«d=cs«d

BB1 bs0.20d bs0.500d
BB2 bs0.20d bs0.250d
BB3 bs0.20d bs0.125d
BB4 bs0.15d bs0.500d
BB5 bs0.15d bs0.250d
BB6 bs0.15d bs0.125d
BB7 bs0.05d bs0.500d
BB8 bs0.05d bs0.250d
BB9 bs0.05d bs0.125d
BD1 bs0.20d ds«d
BD2 bs0.15d ds«d
BD3 bs0.05d ds«d
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d-distribution atumin andumax is approached and for smallsu
2

a Gaussian distribution aroundkul is obtained. Throughout
the following simulations, this distribution is used as initial
condition forpsn,ud.

To solve Eq.s35d, we have to provide an appropriate den-
sity function for the random variable«. We assume for sim-
plicity that « has a stationary distribution. A reasonable
choice would be to assume that« is distributed following Eq.
s36d. A particular choice forcs«d is ad-distribution that cor-
responds to the deterministic mixing frequencys20d. In what
follows, we use both distributions. The constant parameters
for all simulations of Eq.s35d are summarized in Table I.

B. Dependence of the decay exponenta on the initial
distribution p„1,u… and c„«…

In the first numerical experiment, the dependence of the
decay exponenta on the initial distributionps1,ud andcs«d
is investigated. Therefore, prescribed distributions with dif-
ferent initial variance forsu

2s1d ands«
2 are usedssee Table II

and Fig. 2d.
For this simulationl is chosen to be unity and« is in the

range −1ø«ø s1+nd /l−1. The maximum possible value
for « is then found forn=1.

The decay rate ofsu
2 and the decay exponenta are evalu-

ated and plotted in Fig. 3. In the left column, the four differ-
ent combinations with initial variancesu

2s1d=0.20 are plot-
ted, the middle column shows the decay rate for the cases
with su

2s1d=0.15. In the right column, the evolution of
psn,ud is shown for the monomodal initialb distribution
with su

2s1d=0.05.

From the bottom row of Fig. 3 it can be seen thatpsn,ud
experiences strong dynamics over the initial interval, say for
nø10. Over this interval, the variance does not follow the
power-law decay. The influence of the initial distribution of«
on the evolution ofpsn,ud and, consequently, onsu

2snd van-
ish for largen. This is most pronounced for the cases BB7–
BB9 and BD3sright columnd. Here the decay exponents for
all of these cases collapse to a single curve, independent of
cs«d. From this simulation, one can conclude that the ini-
tially assumed distribution for« has only marginal influence
on the decay exponenta for largen. During the simulation,
the value fora never reaches a steady state. The final con-
vergence rate forn=100 000 isuda /dnu,1.0310−6 so that
a is in the range 1.50øaø1.65 for all cases.

C. Dynamic behavior of the PDFp„n ,u…

We will now discuss the influence ofcs«d on the dynam-
ics of psn,ud. Here the mixing parameterl=0.75 is used. In
order to obtain insight into the transient behavior, we choose
a doubled-distribution and a bimodalb distribution as initial
condition for psn,ud, namely, ps1,ud=fdsm+ud+ds1−m
−udg /2 andps1,ud=bs0.15d. For clarity, the different com-
binations used here are summarized in Table III.

At n=2 the initial distribution for the case Dyn1 splits up
into four peaks at positionsu=lsj−gd /2+g with g
=h−m,1−mj andj=h−m ,1−mj. In the succeeding time, those
peaks move toward the centeru=0 while the tails flatten. It
is clear from the Fig. 4 that the transitional behavior of the
PDF for the case Dyn1 is fairly unrealistic. The main reason
for this is the assumptioncs«d=ds«d si.e., the absence of

FIG. 2. Initial conditions for ps1,ud and
cs1,«d=cs«d ;l=1.0.

FIG. 3. Evolution ofsu
2 and decay exponenta

for the initial b distribution inu.
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random fluctuations in the exchange parametergnd. An en-
tirely different dynamic behavior is obtained for the case
Dyn2. The initially smooth density functionps1,ud transits
rapidly to a unimodal distribution and converges to the
d-PDF.

We can summarize that the prescribed distribution of«
influences the transitional dynamics ofpsn,ud. However, its
effect on the decay exponenta for largen is insignificant.

D. Mixing parameter l

From experiments and DNS studies it is well known that
the decay rate strongly depends on the initial ratio of the
velocity and scalar length scales,u and ,c f15g. The free
parameterl is introduced in the mixing frequencys28d in
order to link the present model to experiment data. It was
concluded previously that the presumed form ofcs«d has
only insignificant influence on the decay rate. However, the
dynamic behavior ofpsn,ud is greatly influenced by the sto-
chastic variable«. In anticipation of the overall weak influ-
ence of cs«d on the decay exponent we arbitrarily chose
cs«d=bs0.20d, whereascs«d has nonzero probability only in
the interval −1ø«ø2/l−1. The parameters used for the
different test cases are summarized in Table IV.

Experiments on turbulent mixing show that the variance
su

2 decreases faster with increasing ratio,u/,c, until about
,u/,c,5 f15g. For ratios that are greater than 5, the depen-
dence is negligible. This tendency can be resembled by
changing the mixing parameterl. Figure 5 shows the distinct
dependence of the mixing parameter on the decay ofsu

2. The
power-law exponenta is approximately 1.55 forl=1 sLA1d
and decreases to about 0.62 forl=0.25sLA4d, which corre-
sponds to a “slow” mixing process.

E. Comparison with DNS data

In this section, the evolution of the PDFpst ,ud is com-
pared to data obtained from a direct numerical simulation
sDNSd f19,20g. The three-dimensional DNS is conducted for
decaying, isotropic turbulence in a periodic box. After the

turbulence is fully developed, which is indicated by an in-
crease of the characteristic length scale of the velocity field,
the passive scalar is initialized in discrete “blobs.” This is
expressed by a doubled-function for the PDF ofu with
peaks at its minimum and maximum value.

It is well known that the numerical resolution for a DNS,
expressed by the number of computational grid pointsN in
each spatial direction, scales with the Reynolds number Re,
N,ReaDNS with aDNS= 3

4 where the Reynolds number is
based on the characteristic length scale and velocity scale of
the largest eddies. This clearly shows that for a three-
dimensional simulation even with todays computational re-
sources DNS is restricted to low and moderate Reynolds
number flows. In this DNS, the initial Reynolds number
based on the Taylor length scale is Rel=33. Here, Re is
based on the velocity and length scale at the integral scales
of the turbulence. The governing equations are solved using
a pseudospectral code in a cubic domain withN3=1283 grid
points. For isotropic decaying turbulence, the decay of the
turbulent kinetic energyk follows a power law

kstd , t−n s39d

and experiments suggestn=1.3±0.2. Due to the rapid decay
of k, a DNS is performed only over a relatively short time
period. In the present study, the DNS is performed over a
nondimensional time intervalT=2.28teddy, whereteddy is the
initial large eddy turnover time, based on the integral length
scale and rms velocityf19,20g. The present model describes
the decay of the variance of a passive scalar for very long
time and high Reynolds number, which might invalidate a
comparison of the model with the DNS data. However, in the
following, it is shown that the model is able to describe the
initial decay ofsu

2 accurately.
The integral equations35d can be rewritten in the follow-

ing form:

TABLE III. Combinations used to study dynamic behavior of
psn,ud for l=0.75.

Run ps1,ud cs«d

Dyn1 fdsm+ud+ds1−m−udg /2 ds«d
Dyn2 bs0.15d bs0.50d

FIG. 4. Transitional behavior ofpsn,ud for
different initial conditions and mixing parameter.

TABLE IV. Combinations used to study the influence of the
mixing parameterl on the evolution of the variance.

Run l ps1,ud cs«d f«min,«maxg

LA1 1.00 bs0.15d bs0.20d f−1,1g
LA2 0.75 bs0.15d bs0.20d f−1,5/3g
LA3 0.50 bs0.15d bs0.20d f−1,3g
LA4 0.25 bs0.15d bs0.20d f−1,7g
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pst + Dt,ud =E
−m

1−m E
−1

1+t
lDt

−1 1 + t

1 + t − Dtls1 + «d

3pSt,
s1 + tdu − Dtljs1 + «d

1 + t − Dtls1 + «d D
3pst,jdcst,«dd«dj, s40d

where the timet has been normalized withteddy, and the
concentrationsu andj are normalized bym. Equationss35d
and s40d are derived under the assumption thatjn is a se-
quence of independent random variablesfsee Eq.s19dg. This
assumption restricts the time incrementDt to a lower bound,
which must be larger than a turbulent correlation time. For
the comparison of the model with the DNS we useDt= 1

2 and
ps 1

2 ,ud=pDNSs 1
2 ,ud<bs0.178d. The PDF forcs«d is bs1.0d

for −1ø«ø s1+Dtd / slDtd−1 with l=0.85. The number of
grid points isNu=N«=Nj=200. An adaptive grid has been
employed. The evolution of the PDFpst ,ud for four different
time increments is shown and compared to the DNS data in
Fig. 6.

In the beginning of the process, the distribution of the
initially unmixed scalar is described by a double-d function.
Then, for early times, turbulent stirring and molecular mix-
ing lead to large probabilities of weakly mixed regions with
either very large or very small concentrations. This state is
still described by a bimodal PDF as shown in Fig. 6. For

later timesst<1.5d, the probabilities for very high and low
values decrease in favor of a broad distribution around the
mean value. For even later timesst.1.5d, the PDF assumes
a unimodal distribution with a maximum at the mean value.
The peaks close to the extreme values ofu are slightly over-
predicted for later times, but the general behavior of the PDF
evolution is predicted quite accurately.

IV. CONCLUSION

In this paper we presented a stochastic model for the mix-
ing of a passive scalar in decaying turbulence. The model is
based on the law of large numbers and involves two stochas-
tic processes: the random mixing frequency and the stochas-
tic ambient concentration. The mean mixing frequency de-
cays ast−1 and links the mixing model to the law of large
numbers. We gave a heuristic derivation of the nonlinear
integral equation for the scalar PDFs35d describing the re-
laxation of an arbitrary initial distribution to ad-function.
The sensitivity of the model to different initial conditions
and parameters is numerically analyzed. It was shown that
the distributions for the stochastic mixing frequency and the
initial scalar PDF have only insignificant influence on the
decay rate of the variancesc

2, which was described by a
power law,sc

2~ t−a. This is to be expected because the initial
distribution of the scalar is almost never measured in experi-
ments, assuming implicitly that either the scalar is distributed

FIG. 5. Decay ofsu
2 for different mixing in-

tensitiesl.

FIG. 6. Comparison of the PDFs with the re-
sults from DNS by Sripakagornet al. f19,20g for
l=0.85; sad shapes of the PDFs extracted from
the DNS at timet=0.5, 1.0, 1.5, and 2.0,sbd
shapes of PDFs obtained from the model for
same time as insad.
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initially as a doubled-function or generally disregard the
dependence of the decay ofsc

2 on the initial probability den-
sity function. It was shown that with increasing values of the
mixing parameter, the variance of the passive scalar de-
creases faster. The connection of our model to physical mix-

ing processes is provided through the free parameterl,
which can account for initial length-scale dependencies
,u/,c and other physical effects. We showed that the results
obtained from the model for the evolution of the PDF are in
a good agreement with DNS data.
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