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Stochastic mixing model with power law decay of variance
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A stochastic mixing model based on the law of large numbers is presented that describes the decay of the
variance of a conserved scalar in decaying turbulence as a powenrﬂaw,“. A general Lagrangian mixing
process is modeled by a stochastic difference equation where the mixing frequency and the ambient concen-
tration are random processes. The mixing parametsiintroduced as a coefficient in the mixing frequency in
order to account for initial length-scale ratio of the velocity and scalar field and other physical dependencies.
We derive a nonlinear integral equation for the probability density fundipolf) of a conserved scalar that
describes the relaxation of an arbitrary initial distribution té-unction. Numerical studies of this equation
are conducted, and it is shown thahas a distinct influence on the decay rate of the scalar. Results obtained
from the model for the evolution of the pdf are in a good agreement with direct numerical simyRNS)
data.
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I. INTRODUCTION number part of the scalar and velocity spectriiyk,t) and

The mixing of a conserved scalerc(t,x), advected by a E(K,t) [13]. One can expand both spectra into a Taylor se-
turbulent flow, is a problem of both fundamental and practi-"€S- Eo(k, ) =27k Co+ Cok*+O(kY)] and E(k,t) =27k By
cal interes{1,2]. One of the basic characteristics of the mix- *B2K*+O(k%][14]. For high Reynolds and Peclet numbers,
ing process is the rate at which the scalar varianf¢)  the scalar variance can be considered as a functi@ d,
=((c-w)?) decays with time. Herg: is the mean value, and @ndt alone and dimensional arguments lead to
the angular brackets) denote an averaging procedure. One
of the simplest and widely used mixing models is the inter-
action by exchange with the me@&M) model[3,4]. In this
model, the scalar relaxes toward its mgaaccording to the

o(t) o« CoBy2/%t78/5 (4)

with @=1.2. ForC,,B, equal to zero, the scaling argument
results in different approximate decay laws withequals to

simple equation 6/7,10/7, or Z13].
dc 1 Here we present a simple stochastic mixing model based
dt = ;(C — ). (D onthe law of large number&LN) [16]. The reason why the

LLN is involved in our formulation of the mixing problem is
Other mixing models are based on mapping clogéiethe  that the random conserved scatarc(t,x(t)) appears to be-
coalescence-dispersion modél, the Langevin mode[7],  have as a sample mean. It converges to the mean yalue
the Fokker-Planck modelf8], the stochastic mixing fre- while the variances2(t) decays approximately as'. Since
quency mode[9], integral modelq10], and the Euclidean the variance of the scalar decays faster than a sample mean
minimum spanning tree modéEMST) [11]. Reviews of  (typically « is greater than unily we will introduce some

these can be found if,2]. ' nonlinear modifications into the corresponding probability
There are two different Iaws_governlng the decay rate of &lensity function(PDP) equation[see Eq.(35)]. The main
passive scalar@) the exponential lavy12] idea is to develop a robust model that is independent from
Ug(t) o expl- t/7}, 2) restrictive assumptions regarding stochastic properties of the

mixing process. Here we exploit the similarity of the behav-
with the characteristic time- which is appropriate for sta- jor of a scalarc to that of the sample mean
tionary turbulence an¢b) the power law[13,14]
1

2 -« n
GO @ &= & (5)
without any characteristic time scale that is typical for de- k=1
caying turbulence. here is a sequence of mutually independent ran-
Most theoretical models introduce a characteristic time" 51.""|’§“ ! h hqu. utually indep L
scale and assume implicitly or explicitly the exponential de—dom variables, each having a mearand standard deviation
cay rate. The main purpose of this paper is to study théfg' The LLN tel.ls us that't.he random.suna tendg to t2he
mixing process following the power la(8). Experiment re- mean valueu with probability one, while the \{grlancecn.
sults show that the decay of the variance strongly depends dn{(Ca—#)?) decays asoz/n. Then, the probability density
the initial ratio of the velocity and scalar length scales andunction ofc, tends to as-function, 5(c-u), asn— < inde-
that there is no universal decay exponghb]. It is well — pendent of the initial shape of the PIPKO,c). In the present
known that the decay exponeatdepends on the low wave- paper, where we consider decaying isotropic turbulence with
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the constant scalar mean the discrete incrememt can be
understood as the time variable.

The main result of this paper is the derivation of the time-
discrete nonlinear integral equation for the PPIE,c)

PAa t+1
pit+10= [ |
0J-1 1+t_)\(1+8)

Xp(t,(t+ (c-p) -1 +e)(z-u)>
1+t-N1+¢)

X p(t,2)yt,e)dedz (6)

for t=1,2,3,.. . Here y(t,¢) is the PDF for the mixing fre-
guency and is the mixing parametgisee below. The main

FIG. 1. Mixing problem along Lagrangian path way.

property of this equation is that it describes the relaxation of ct)-¢ _ _
p(t,c) to a &-function c(0)-¢ expl= ) (10
p(t,c) — &c— w) ast — oo, (7) The key feature of the present model is titgt) is a

random process and functional cft) itself. The crucial as-
sumption that relates Eq9) to the law of large numbers is
that the mean valuéy(t)) behaves as™ for larget. One can
show that for a statistically homogeneous Gaussian scalar

The decay of the varianceﬁ(t)=<(c(t)— w)?), is of the form
t™« for larget. The caser=1 corresponds to the law of large
numbers.

The remainder of this paper is organized as follows. In; - . X
Sec. Il we derive the integral equation from a stochastic dif-f'e',d c=c(t,x), the m.ean valuéx(V)) is propor.tlon.al to the
ference equation describing the evolution of the PDF of dalo X/"%z’ where x is the mean-scalar dissipation rae,
passive scalar in time. In Sec. Ill we solve the nonlinear- 2D{(Vc)") (see p. 551 in Ref[2]). It follows from the
integral equation numerically and analyze the influence oflassical equation for the variance ded¢ay

the different parameters on the decay rate. The evolution of do?
c _

the PDF is compared to data obtained from a direct numeri- — ==, (11
cal simulation(DNS). dt
that if the scalar varianceﬁ(t)oct‘“, then the mean scalar
Il. STOCHASTIC MIXING MODEL dissipationy decays a$™1*® and, therefore,
The evolution of a passive scalerc(t,x) is governed by (p(t)y o t™L, (12

the stochastic PDE "
Of course, these results are specific to a homogeneous

Gaussian field, and it would be very difficult to validate them
in a general case. Therefore, the above formula should be
considered as the main assumption of the paper.
wherev(t,x) is the random velocity field and is the mo- The appearance of the power-law decay in the determin-
lecular diffusivity. The classical problem is to derive a closedistic case can be understood if we assume that the mixing
equation for the Euler one-point PDp=p(c;t,x)=(d(c frequencyy is A(to+t)™L. Then

-c(t,x))). A detailed discussion of this, still unsolved, prob-

lem can be found ifi2]. In the present paper we consider the —=-—"(c-9. (13)
mixing problem in the Lagrangian framework by introducing dt  to+t

a passive scalar(t)=c(t,x(t)) of a particle volume moving
with the velocityv(t,x(t)) (see Fig. 1

Jc
ot v(t,x) - Vc=DVZc, (8)

The solution to this simplified equation takes the form of the
power-law decay
A. Stochastic difference equation c(t)-¢ - ( to ))‘ (14)

The equation for the scalaxt)=c(t,x(t)) of the particle c0-c \fo+t
moving with the random velocity(t,x(t)) can be approxi-  Since our aim here is to relate the mixing problem to the law

mated by the stochastic equation of large numbers for the sample me@, it is more conve-
de nient to rewrite Eq(9) as a stochastic difference equation for
at = - y(t)(c-c(t)), (99  the concentratiom,
t

- = - - = = =
where the mixing frequency(t) and the ambient concentra- Cr1 === MlCn =G O Cp=1, n=123...,
tion C(t) are random processes. For the constant values of (15)
and ¢, we obtain the IEM mode(1) with the exponential ~where y, and¢, are the mixing frequency and the random
decay ambient concentration at the timeWe assume that they are
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sequences of mutually independent random variables with n+1 (= (n+u-¢
the densities p(n+1,u)= —f —— |e(Hd¢

w(n,y) = —P{yn< Y, #(n,C) = —P{cn< ¢ (16 n=1,2,3... (24
Here we used the inverse equation

n+uyq—
! A N S un:—( JUne1 = & (25)
(yw =] vyolnydy= Ton (€= cé(n,c)dc=pu. n
0 0
The main properties of the solution of the Kolmogorov equa-
tion (24) with the arbitrary initial conditiorp(1,u) are

and the first moments

(17)

In what follows we assume that the mean concentratios
constant. The mean mixing frequen¢y,) has been chosen

in such a way that it is equal te/2 at timen=1. The pa- and
rameter\ can be regarded as a measure of the mixing fre- 1
quency. Since &c,=<1,v, obeys the inequality & y,=< f u?p(n,u)du— n"tasn — o, (27)
By introducing the deviations from the meanfor the con- -

centration of the particle and its surrounding, respectively,

p(n,u) — &(u) asn — «© (26)

Un=Cn= 4k, & =Cn= K, (18) C. General case: Random mixing frequency and nonlinear
we can rewrite Eq(15) as PDF equation

U1 =Un= V(U= &), —p<uU,<1-u n=1,2,3,., To account for the_ entire spectrum of time sc_ales, we now
assume that the mixing frequengy is a stochastic variable.
(19) It is convenient to write

where &, is a sequence of zero mean, independent random

variables with the density(n, ) and u<§é<1-pu. Vo= 1T(l +ep), (298

B. Law of large numbers and forward Kolmogorov equation . .
whereeg, is the sequence of zero mean, independent random

To illustrate the connection between the mixing problemyariables. Since & y,=<1, it follows from Eq.(28) that
and the law of large numbers, consider the case when the
sequence, is statistically stationary; that isp(£) is inde- l=e < 1+n 1 (29)
pendent ofn and the mixing frequency, is a deterministic " '

sequence of the form The decay of the variance of the mixing frequemrf};{(n) can

1 be determined as
Yn= 1 (20
+n 2<82>
2,0\ _ 2\ _
with A=1. Let us write Eq(19) in a slightly different form 75N ={(r = v = (1+n)?’ (30
Unig = Uy = ———(Un = &,p) 21) When bothe, and &, are random variables, we have to
LTI o S specify the joint probability density far andé. If we denote

it by W(n,e,£), then the forward Kolmogorov equation for

If we assumeu,=¢,, it follows from Eq. (21) that u,=(&; p(n,u) takes the form

+&)12,u3=(&+&+&5)/13, and so on. Therefore, the solu-

tion of Eq.(21) can be written as a sample mean Ion 1”‘ _n+l
p(n+1,u)=
1+n- )\(1 +¢)
=- , 22
ng Sk (22 y ( (n+l)u—)\(l+£)§>
" 1+n-N1+e)

which tends to the zero mean as—o while the variance
(Upyorn ™ [17]. XW(n,e,&)dsdé. (31)
The advantage of having E@L9) is that we can easily

derive an equation for the probability density function This equation follows from the stochastic difference equation

for the Markov jump process:

p(n,u) = iP{u <u}, n=1,2,3 (23 N
odu T Una=Un= (I +ed(n=&) —pu<u<1l-p
It follows from Egs.(19) and(20) thatu, is a discrete Mar- (32)
kov process and the PDF for this process satisfies the for-
ward Kolmogorov equatiohl6] and its inverse
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(N+ Duyey - N1 +e)&, TABLE |I. Fixed parameters used for the numerical
u,= 33 i i
n 1+n-N1+e) (33)  simulation.

Sincey, is determined by the random scalar dissipation rate, Parameter Description Value
it is natural to assume that, and &, are independent. More-

over, the PDF foi, must be related tp(n,u). The simplest nEnd number of time steps 100 000
choice would be to assume#n, £€), which gives M mean value 0.5
Ny dimension ofu 101
W(n,e, &) =p(n,&en,e). (34) N, dimension of¢ 101
In this case the generalized nonlinear integral equation for N, dimension ofe 101

p(n,u) can be written as
(n+1.0)= 1w %—1 n+1 :(Nu—l)‘lff;"w(u)du is satisfied. The weight function(u)
p U) = L) 1en-n@+e is a positive function measuring the variation of the solution.

A. Parameters and initial conditions

( (n+u-r(1 +£)§>
Xpl n,
1+n-N1+¢)
From experiments and DNS studies it is known that the
Xp(n,§y(n,e)deds (35) density distribution of a passive scalar can be reasonably
forn=1,2,3,.. . It follows from Eq.(30) that the variance of ~approximated by g3 distribution [1,2]. Recall that thes
the mixing frequencyozy(n) decays am? if the variance distribution has nonzero probability in the interval

0?=(¢?) is constant. [Umin, Umax] and has the form

We expect that the variance of a passive scaz%(rn) T b
- 2\ — /1,2 - ; . — (a+ ) 1-a-b a-1
=((c,—w)?)=(u;) behaves as™ for largen. Taking the ana- Blui{uy, o)) = I )F(b)(umax_ Upnin) (U= Upin)
lytical solution of the simplified mod€lL3) into account, we a
anticipate a strong dependenceaobn the mixing parameter X (Upax— U)°72. (36)

\. The trivial casen=0 describes the motion of an inert
particle in its surrounding and E¢L9) has the simple solu-
tion u,=uy for all n. However, if\ is close to its upper limit,

It is fully described by two parameters, which are functions
of (uy and o’

the Lagrangian particle volume experiences strong interac- ud = U W = U ) (Upae— (U
tions with its surrounding. Intuitively, it can be expected that a= W — () m'“())(z max (W) _ 1, @37
the mixing parametex has a distinct influence on the decay Urmax ™ Umin u
of aﬁ [see solution14) to simplified equatioh
b= Umax ™~ <U> (<u> B umin)(umax_ <U>) 1
= 5 -1]. (39
Umax ™~ Umin gy

III. NUMERICAL RESULTS
] ) . i The B distribution adopts a wide range of shapes: for the
The integral equatioii35) describes the relaxation of an maximum  variance 2= ((U) = Up) (Una—(U)), @ double
arbitrary initial PDF of a conserved scalac to a !

S-distribution for largen. Because of the nonlinearity ip,
this equation needs to be solved numerically. In this sectio
we analyze the behavior of the solution of Eg5) for dif-
ferent values of the parametex, initial conditions for
p(n,u), and the density functioni(n,e) for the stochastic

n TABLE II. Combinations of initial distributions used for the
parameter studys(a?) (4 distribution with prescribed variance)
8(¢) (Dirac &-function for ¢).

variable ,. In particular, we study the dependence of the Run ptu WLoe)=yle)
decay exponen& on \ and (n,e). BB1 5(0.20 B(0.500
Let us first discuss some numerical issues. In order to BB2 B(0.20 B(0.250
advance the densitp(n+1,u) in time, Eq. (35 must be BB3 5(0.20 5(0.125
integrated over thé ande space, which results in the overall BB4 3(0.19 3(0.500
complexity O(N, X Nz X N,) for each time step. Heré|, de- BB5 £(0.15 5(0.250
notes the number of grid points in thg direction. This BBG ,8(0.15) ﬂ(0.125
makes the computation rather time-consuming. However, a ' '
computer code can be easily parallelized alongulteordi- BB7 A(0.09 £(0.500
nate. The initial density ofi relaxes to as-distribution with BB8 8(0.09 (0.250
steep gradients around=0. An adaptive grid using the equi- BB9 B(0.09 5(0.129
distribution principle is employed in and ¢ space in order BD1 5(0.20 Se)
to resolve the shape of the PDF properly. In the equidistri- BD2 5(0.15 8e)
bution principle[18], an initially given number of grid points BD3 B(0.05 5e)

is distributed in such a way that the conditigﬁwlw(u)du
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3 T T T 3 T T T
(0.200) 25 —  B(0.500)
- /3(0'150) /(:)\ ﬂ(0_250)
- B(0.050) 3 2 e ((0.125)
| 'T') 15 FIG. 2. Initial conditions forp(1,u) and
4 1 W(1,e)=y(e);\=1.0.
>
05
ok I | | 0 Kt L e
-05 -0.25 0 0.25 0.5 -1 -0.5 0 05 1
u €
S-distribution atu,,i, andun,axiS approached and for sma:lﬁ From the bottom row of Fig. 3 it can be seen tpét,u)

a Gaussian distribution arourid) is obtained. Throughout experiences strong dynamics over the initial interval, say for
the following simulations, this distribution is used as initial n=10. Over this interval, the variance does not follow the
condition forp(n,u). power-law decay. The influence of the initial distributionsof
To solve Eq.(35), we have to provide an appropriate den-on the evolution of(n,u) and, consequently, ogZ(n) van-
sity function for the random variable We assume for sim- ish for largen. This is most pronounced for the cases BB7-
plicity that £ has a stationary distribution. A reasonable BB9 and BD3(right columr). Here the decay exponents for
choice would be to assume thais distributed following Eq.  all of these cases collapse to a single curve, independent of
(36). A particular choice forj(e) is a &-distribution that cor-  ¢(e). From this simulation, one can conclude that the ini-
responds to the deterministic mixing frequeri2®). In what tially assumed distribution fog has only marginal influence
follows, we use both distributions. The constant parametersn the decay exponeiat for largen. During the simulation,
for all simulations of Eq(35) are summarized in Table I. the value fora never reaches a steady state. The final con-
vergence rate fon=100 000 is|da/dn|<1.0x 10°° so that

L a is in the range 1.5& o< 1.65 for all cases.
B. Dependence of the decay exponent on the initial

distribution p(1,u) and ()

In the first numerical experiment, the dependence of the C. Dynamic behavior of the PDFp(n, u)
decay exponenk on the initial distributionp(1,u) and ¢{«) We will now discuss the influence a@f(¢) on the dynam-
is investigated. Therefore, prescribed distributions with dif-ics of p(n,u). Here the mixing parametar=0.75 is used. In
ferent initial variance fow?(1) ando? are usedsee Table Il order to obtain insight into the transient behavior, we choose
and Fig. 2. a doubles-distribution and a bimoda® distribution as initial

For this simulatior\ is chosen to be unity anelis in the  condition for p(n,u), namely, p(1,u)=[&u+u)+81-u
range —ke<(1+n)/A-1. The maximum possible value -u)]/2 andp(1,u)=B(0.15. For clarity, the different com-
for & is then found fom=1. binations used here are summarized in Table III.

The decay rate of and the decay exponeatare evalu- At n=2 the initial distribution for the case Dyn1 splits up
ated and plotted in Fig. 3. In the left column, the four differ- into four peaks at positionsu=\(é-v)/2+y with 1y
ent combinations with initial variance?(1)=0.20 are plot- ={-u,1-u} andé={-u,1-u}. In the succeeding time, those
ted, the middle column shows the decay rate for the casgseaks move toward the center0 while the tails flatten. It
with ¢7(1)=0.15. In the right column, the evolution of is clear from the Fig. 4 that the transitional behavior of the
p(n,u) is shown for the monomodal initigB distribution  PDF for the case Dyn1 is fairly unrealistic. The main reason

with oﬁ(l):0.0S. for this is the assumption(e)=48(e) (i.e., the absence of
02(1) = 0.20 g2(1) =0.05
= — BB ] N — BIB7 ]
L] - BB2 - BB8
- BB3 L BBY 4

------- BDI - BD3

2
u

logy[o;

(n)—o
N S S
gyl A

FIG. 3. Evolution ofoﬁ and decay exponeiat
for the initial B distribution inu.

5 0 2 3 4 5
logzo(n) logyo(n) logyo(n)
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TABLE Ill. Combinations used to study dynamic behavior of = TABLE IV. Combinations used to study the influence of the

p(n,u) for A=0.75. mixing parametei on the evolution of the variance.
Run p(1,u) Wle) Run A p(1,u) e) [&min: Emax]
Dynl [S(u+u)+8(1-pu—u)]/2 8e) LAl 1.00 5(0.15 5(0.20 [-1,1]
Dyn2 £(0.15 £(0.50 LA2 0.75 £(0.15 5(0.20 [-1,5/3
LA3 0.50 B(0.15 5(0.20 [-1,3]
LA4 0.25 B(0.15 5(0.20 [-1,7]

random fluctuations in the exchange parametgr An en-
tirely different dynamic behavior is obtained for the case
Dyn2. The initially smooth density functiop(1,u) transits  tyrhulence is fully developed, which is indicated by an in-
rapidly to a unimodal distribution and converges to thecrease of the characteristic length scale of the velocity field,
6-PDF. the passive scalar is initialized in discrete “blobs.” This is

We can summarize that the prescribed distributiore of expressed by a doublé-function for the PDF ofu with
influences the transitional dynamics pffn,u). However, its peaks at its minimum and maximum value.

effect on the decay exponeatfor largen is insignificant. It is well known that the numerical resolution for a DNS,
expressed by the number of computational grid pohhtis
D. Mixing parameter A each spatial direction, scales with the Reynolds number Re,

N~Re®ns with apys=5 where the Reynolds number is
based on the characteristic length scale and velocity scale of
She largest eddies. This clearly shows that for a three-
dimensional simulation even with todays computational re-

paramete_r)\ is Infroduced in the mixing fr_equeno(328) n sources DNS is restricted to low and moderate Reynolds
order to link the present model to experiment data. It Was \mber flows. In this DNS. the initial Reynolds number

concluded previously that the presumed formd¢) has based on the Taylor length scale is,R83. Here, Re is

gnly ingigéﬂifri]car)t influencel on theldgc]cTy rateal-éowf?ver, theoased on the velocity and length scale at the integral scales
ynamic benavior op(n,_u)_ IS greaty Influenced by t € StO- of the turbulence. The governing equations are solved using
chastic variables. In anticipation of the overall weak influ- pseudospectral code in a cubic domain Wil 128 grid

ence of y) on the decay exponent we arbitrarily chose sints For isotropic decaying turbulence, the decay of the

ye)=pB(0.20, whereas){s) has nonzero probability only in - ,rhylent kinetic energk follows a power law
the interval —l=<e¢=<2/\-1. The parameters used for the

different test cases are summarized in Table IV.

Experiments on turbulent mixing show that the variance k(t) ~t™ (39
o2 decreases faster with increasing ratig ¢, until about
€,/€.~5 [15]. For ratios that are greater than 5, the depen-
dence is negligible. This tendency can be resembled bfnd experiments suggest1.3+0.2. Due to the rapid decay
changing the mixing parameter Figure 5 shows the distinct Of k, @ DNS is performed only over a relatively short time
dependence of the mixing parameter on the decaytoThe  Period. In the present study, the DNS is performed over a
power-law exponent is approximately 1.55 fox=1 (LA1)  nhondimensional time interval=2.28q, Whereteqqy is the

and decreases to about 0.62 for0.25(LA4), which corre-  initial large eddy turnover time, based on the integral length
sponds to a “slow” mixing process. scale and rms velocit}19,20Q. The present model describes

the decay of the variance of a passive scalar for very long

time and high Reynolds number, which might invalidate a

comparison of the model with the DNS data. However, in the
In this section, the evolution of the PD#t,u) is com-  following, it is shown that the model is able to describe the

pared to data obtained from a direct numerical simulatiorinitial decay ofo? accurately.

(DNS) [19,20. The three-dimensional DNS is conducted for  The integral equatiof35) can be rewritten in the follow-

decaying, isotropic turbulence in a periodic box. After theing form:

From experiments and DNS studies it is well known that
the decay rate strongly depends on the initial ratio of th
velocity and scalar length scalég and ¢, [15]. The free

E. Comparison with DNS data

Dynl
3 T T T T T

)
?
H
H
H
H

FIG. 4. Transitional behavior op(n,u) for
different initial conditions and mixing parameter.

log;g[p(n, u)]
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1 T T T T
= 0,
= ok
Voo
= 3k
N oaf - LA1 (A =1.00)
= f LA2 (A =0.75)
@ SF --- LA3(A=050)
S sfF — LAt(x=025) E
7 1 | | L :
, FIG. 5. Decay ofoﬁ for different mixing in-
tensitiesh.
251
.
3 15F
it
0.5+ B E
0 1 1 1 1
0 1 2 4 5
logyo(n)
1-u %_1 1+t later times(t=1.5), the probabilities for very high and low
p(t+At,u) =f 1+t-AtN1+e) +t- AN +e) values decrease in favor of a broad distribution around the
o mean value. For even later timé&s>1.5), the PDF assumes
(L+u—AtNE(L +e) a unimodal distribution with a maximum at the mean value.
©1+t-A(Ll +e) The peaks close to the extreme valuesi@fre slightly over-
predicted for later times, but the general behavior of the PDF
Xp(t, &) ¥t e)deds, (400 evolution is predicted quite accurately.
where the.timet has been normalized With gy, .and the V. CONCLUSION
concentrationsl and £ are normalized by:. Equations(35)
and (40) are derived under the assumption tiatis a se- In this paper we presented a stochastic model for the mix-

quence of independent random variafjiese Eq(19)]. This ing of a passive scalar in decaying turbulence. The model is
assumption restricts the time incremeitto a lower bound,  pased on the law of large numbers and involves two stochas-
which must_ be larger than a tl_eruIent correlation }lme. Foric processes: the random mixing frequency and the stochas-
the comparison of the model with the DNS we uete5 and  tic ambient concentration. The mean mixing frequency de-
p(3,u)=ppns(3,ul=B(0.178. The PDF foryie) is B(1.00  cays ast™ and links the mixing model to the law of large
for —-1<e=<(1+At)/(ANAt)-1 with A=0.85. The number of numbers. We gave a heuristic derivation of the nonlinear
grid points isN,=N,=N,=200. An adaptive grid has been integral equation for the scalar POB5) describing the re-
employed. The evolution of the POitt, u) for four different  laxation of an arbitrary initial distribution to &-function.
time increments is shown and compared to the DNS data iffhe sensitivity of the model to different initial conditions
Fig. 6. and parameters is numerically analyzed. It was shown that
In the beginning of the process, the distribution of thethe distributions for the stochastic mixing frequency and the
initially unmixed scalar is described by a douldiéunction. initial scalar PDF have only insignificant influence on the
Then, for early times, turbulent stirring and molecular mix-decay rate of the variance?, which was described by a
ing lead to large probabilities of weakly mixed regions with power Iaw,oﬁmt‘“. This is to be expected because the initial
either very large or very small concentrations. This state iglistribution of the scalar is almost never measured in experi-
still described by a bimodal PDF as shown in Fig. 6. Forments, assuming implicitly that either the scalar is distributed

— t=0.50

e £ 100

1 e ¢ = 1.50 4 1F
e £= 2,00 :

FIG. 6. Comparison of the PDFs with the re-
sults from DNS by Sripakagoret al.[19,2Q for
N=0.85; (a) shapes of the PDFs extracted from
the DNS at timet=0.5, 1.0, 1.5, and 2.0(b)
ali i ] ak . shapes of PDFs obtained from the model for
: same time as ifa).

log,olppns (¢, w)]
log;o[p(t, u)]

016310-7



FEDOTOV, IHME, AND PITSCH PHYSICAL REVIEW Er1, 016310(2005

initially as a doubleés-function or generally disregard the ing processes is provided through the free paramgter
dependence of the decay@f on the initial probability den- which can account for initial length-scale dependencies
sity function. It was shown that with increasing values of the{,/¢. and other physical effects. We showed that the results
mixing parameter, the variance of the passive scalar desbtained from the model for the evolution of the PDF are in
creases faster. The connection of our model to physical mixa good agreement with DNS data.
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